

Technical specifications

Reachy 2 is a highly modular, open-source humanoid robot designed for research and education. It combines **advanced vision**, **audio**, and **actuator systems** for **cutting-edge AI interaction** and **teleoperation**.

GENERAL FEATURES

- Hardware :
 - Height : 95-130cm, Weight : 20kg
 - 7-DoF bio-inspired arm
 - ~3kg/6.6lbs payload arm
 - Parallel torque controlled gripper
 - Multiple cameras for stereo vision and depth perception
 - High-quality audio system for immersive teleoperation and AI-based interactions
 - Omnidirectional mobile base

• Software :

- Safe Rust-based firmware
- Low level control loop uses EtherCAT and runs at 500Hz
- Core software based on ROS2
- Python SDK
- OTA software upgrades
- Intuitive VR teleoperation with 3D vision and spatialized audio

PERCEPTION

Vision Module (Head)	RGB Cameras	2x IMX296 global shutter cameras Depth FoV: H107° V91°
	ToF Module	Between Reachy's eyes for depth measurement and 3D mapping of reachy's surroundings
		Luxonis OAK-FFC ToF 33D sensor Depth range: 0.20 to 5m
		Depth resolution: up to 640x480 @45fps
		Depth FoV: H90° V65°
		Depth accuracy: <1%
	Video Encoding	On-chip support for h264/h265 video encoding for real-time streaming
Vision Module (Torso)	RGB-D Camera	Fixed in Reachy's torso for accurate depth sensing in Reachy's manipulation working space
		Orbecc Gemini 336 RGB-D camera
		Depth range: 0.26 to 3m
		Depth resolution: up to 1280x800 @30fps
		Depth FoV: H90° V65°
		Depth accuracy: <1.5%
Audio System	Microphones	2x Lavalier Go professional microphones fitted in Reachy's antennas for immersive stereo perception

INTERACTION

Audio System	Speakers	Custom-built with high-quality amplifier (located in the abdomen)
	Audio Interface	Rode AI-Micro for dual-channel audio
Expressions	Antennas	Reachy's motorised antennas for enhanced human-robot interaction
	Head	Expressive head powered by patented orbita system allowing the robot to mimick human's expression

Pollen Robotics SAS 33000 Bordeaux, France contact@pollen-robotics.com

MANIPULATION

Actuators	Orbita 3D	 3-DOF patented parallel mechanisms used in Reachy's neck and wrists Maxon DC brushless motors (90W) Nominal speed: 50rpm 	
	Orbita 2D	 2-DOF patented parallel mechanisms used in Reachy's shoulders and elbows Maxon DC brushless motors (120W) Nominal speed: 50rpm 	
Gripper	Parallel gripper Alternative end-effector	per - Dynamixel-based - Torque control Alternative grippers can be integrated (e.g. Aloha grippers, Inspire "Dexterous hand")	

CONTROL

Computer system	Processing Unit	Solidrun Bedrock v3000 - fanless, CPU-based industrial PC	
	AI Processing	AI processed on external hardware (e.g., cloud, user's GPU/TPU)	
Usability	Quick startup Time	The robot becomes fully operational in about 1 minute and 30 seconds after powering on	
	Docker	The Docker-based software stack is straighforward to install and use	
Python SDK	Easy robot programming		
ROS2 Middleware	- Exposes standard ROS2 interfaces (ROS2 control, TFs, states) - Simple access to kinematics services (DK and symbolic IK)		
VR Teleoperation	Control Reachy 2 via VR headset for immersive teleoperation: - PC-Based App - Compatible Devices : - Meta Quest 2 and 3 (Recommended) - HTC Vive and Valve Index		
Dashboard	- OTA software upgrades - Service control - Real-time robot monitoring		
Visualization	Rviz (default), also supports FoxGlove and rerun.io.		
Simulation	Gazebo		

