Reachy 2

Technical specifications

Reachy 2 is a highly modular, open-source humanoid robot designed for research and education. It combines **advanced vision**, **audio**, and **actuator systems** for **cutting-edge Al interaction** and **teleoperation**.

GENERAL FEATURES

Hardware:

- Height: 95-130cm, Weight: 20kg
- 7-DoF bio-inspired arm
- ~3kg/6.6lbs payload arm
- Parallel torque controlled gripper
- Multiple cameras for stereo vision and depth perception
- High-quality audio system for immersive teleoperation and Al-based interactions
- Omnidirectional mobile base

Software:

- Safe Rust-based firmware
- Low level control loop uses
 EtherCAT and runs at 500Hz
- Core software based on ROS2
- Python SDK
- OTA software upgrades
- Intuitive VR teleoperation with 3D vision and spatialized audio

PERCEPTION

Vision Module (Head)	RGB Cameras	2x IMX296 global shutter cameras Depth FoV: H107° V91°
	ToF Module	Between Reachy's eyes for depth measurement and 3D mapping of reachy's surroundings
		Luxonis OAK-FFC ToF 33D sensor Depth range: 0.20 to 5m
		Depth resolution: up to 640x480 @45fps
		Depth FoV: H90° V65°
		Depth accuracy: <1%
	Video Encoding	On-chip support for h264/h265 video encoding for real-time streaming
Vision Module	RGB-D Camera	Fixed in Reachy's torso for accurate depth sensing in Reachy's manipulation working space
(Torso)		Orbecc Gemini 336 RGB-D camera
		Depth range: 0.26 to 3m
		Depth resolution: up to 1280x800 @30fps
		Depth FoV: H90° V65°
		Depth accuracy: <1.5%
Audio System	Microphones	2x Lavalier Go professional microphones fitted in Reachy's antennas for immersive stereo perception

Reachy 2

INTERACTION

Audio System	Speakers	Custom-built with high-quality amplifier (located in the abdomen)
	Audio Interface	Rode AI-Micro for dual-channel audio
Expressions	Antennas	Reachy's motorised antennas for enhanced human-robot interaction
	Head	Expressive head powered by patented orbita system allowing the robot to mimick human's expression

Reachy 2

MANIPULATION

Actuators	Orbita 3D	3-DOF parallel mechanisms used in Reachy's neck and wrists	
		- Maxon DC brushless motors (90W)	
		- Nominal speed: 50rpm	
	Orbita 2D	2-DOF patented parallel mechanisms used in Reachy's shoulders and elbows	
		- Maxon DC brushless motors (120W)	
		- Nominal speed: 50rpm	
Gripper	Parallel grippe	lel gripper - Dynamixel-based	
		- Torque control	
	Alternative end-effector	Alternative grippers can be integrated (e.g. Aloha grippers, Inspire "Dexterous hand")	

CONTROL

Computer system	Processing Unit	Solidrun Bedrock v3000 - fanless, CPU-based industrial PC	
	Al Processing	AI processed on external hardware (e.g., cloud, user's GPU/TPU)	
Usability	Quick startup Time	The robot becomes fully operational in about 1 minute and 30 seconds after powering on	
	Docker	The Docker-based software stack is straighforward to install and use	
Python SDK	Easy robot programming		
ROS2 Middleware	- Exposes standard ROS2 interfaces (ROS2 control, TFs, states) - Simple access to kinematics services (DK and symbolic IK)		
VR Teleoperation	Control Reachy 2 via VR headset for immersive teleoperation: - PC-Based App - Compatible Devices: - Meta Quest 2 and 3 (Recommended) - HTC Vive and Valve Index		
Dashboard	OTA software upgradesService controlReal-time robot monitoring		
Visualization	Rviz (default), also supports FoxGlove and rerun.io.		
Simulation	Gazebo, MuJoCo (in progress)		

